Papers
Topics
Authors
Recent
2000 character limit reached

DiffHash: Text-Guided Targeted Attack via Diffusion Models against Deep Hashing Image Retrieval (2509.12824v1)

Published 16 Sep 2025 in cs.IR

Abstract: Deep hashing models have been widely adopted to tackle the challenges of large-scale image retrieval. However, these approaches face serious security risks due to their vulnerability to adversarial examples. Despite the increasing exploration of targeted attacks on deep hashing models, existing approaches still suffer from a lack of multimodal guidance, reliance on labeling information and dependence on pixel-level operations for attacks. To address these limitations, we proposed DiffHash, a novel diffusion-based targeted attack for deep hashing. Unlike traditional pixel-based attacks that directly modify specific pixels and lack multimodal guidance, our approach focuses on optimizing the latent representations of images, guided by text information generated by a LLM for the target image. Furthermore, we designed a multi-space hash alignment network to align the high-dimension image space and text space to the low-dimension binary hash space. During reconstruction, we also incorporated text-guided attention mechanisms to refine adversarial examples, ensuring them aligned with the target semantics while maintaining visual plausibility. Extensive experiments have demonstrated that our method outperforms state-of-the-art (SOTA) targeted attack methods, achieving better black-box transferability and offering more excellent stability across datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.