Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

BATR-FST: Bi-Level Adaptive Token Refinement for Few-Shot Transformers (2509.12768v1)

Published 16 Sep 2025 in cs.CV and cs.LG

Abstract: Vision Transformers (ViTs) have shown significant promise in computer vision applications. However, their performance in few-shot learning is limited by challenges in refining token-level interactions, struggling with limited training data, and developing a strong inductive bias. Existing methods often depend on inflexible token matching or basic similarity measures, which limit the effective incorporation of global context and localized feature refinement. To address these challenges, we propose Bi-Level Adaptive Token Refinement for Few-Shot Transformers (BATR-FST), a two-stage approach that progressively improves token representations and maintains a robust inductive bias for few-shot classification. During the pre-training phase, Masked Image Modeling (MIM) provides Vision Transformers (ViTs) with transferable patch-level representations by recreating masked image regions, providing a robust basis for subsequent adaptation. In the meta-fine-tuning phase, BATR-FST incorporates a Bi-Level Adaptive Token Refinement module that utilizes Token Clustering to capture localized interactions, Uncertainty-Aware Token Weighting to prioritize dependable features, and a Bi-Level Attention mechanism to balance intra-cluster and inter-cluster relationships, thereby facilitating thorough token refinement. Furthermore, Graph Token Propagation ensures semantic consistency between support and query instances, while a Class Separation Penalty preserves different class borders, enhancing discriminative capability. Extensive experiments on three benchmark few-shot datasets demonstrate that BATR-FST achieves superior results in both 1-shot and 5-shot scenarios and improves the few-shot classification via transformers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube