Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Intermediate Representations of Time Series Foundation Models for Anomaly Detection (2509.12650v1)

Published 16 Sep 2025 in cs.LG and cs.AI

Abstract: Detecting anomalies in time series data is essential for the reliable operation of many real-world systems. Recently, time series foundation models (TSFMs) have emerged as a powerful tool for anomaly detection. However, existing methods typically rely on the final layer's representations of TSFMs, computing the anomaly score as a reconstruction or forecasting error via a task-specific head. Instead, we propose TimeRep, a novel anomaly detection approach that leverages the intermediate layer's representations of TSFMs, computing the anomaly score as the distance between these representations. Given a pre-trained TSFM, TimeRep selects the intermediate layer and patch-token position that yield the most informative representation. TimeRep forms a reference collection of intermediate representations from the training data and applies a core-set strategy to reduce its size while maintaining distributional coverage. During inference, TimeRep computes the anomaly score for incoming data by measuring the distance between its intermediate representations and those of the collection. To address concept drift, TimeRep integrates an adaptation mechanism that, at inference time, augments the collection exclusively with non-redundant intermediate representations from incoming data. We conducted extensive experiments on the UCR Anomaly Archive, which contains 250 univariate time series. TimeRep consistently outperforms a broad spectrum of state-of-the-art baselines, including non-DL, DL, and foundation model-based methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.