Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Sampling Scheduler (2509.12569v1)

Published 16 Sep 2025 in cs.CV and cs.AI

Abstract: Consistent distillation methods have evolved into effective techniques that significantly accelerate the sampling process of diffusion models. Although existing methods have achieved remarkable results, the selection of target timesteps during distillation mainly relies on deterministic or stochastic strategies, which often require sampling schedulers to be designed specifically for different distillation processes. Moreover, this pattern severely limits flexibility, thereby restricting the full sampling potential of diffusion models in practical applications. To overcome these limitations, this paper proposes an adaptive sampling scheduler that is applicable to various consistency distillation frameworks. The scheduler introduces three innovative strategies: (i) dynamic target timestep selection, which adapts to different consistency distillation frameworks by selecting timesteps based on their computed importance; (ii) Optimized alternating sampling along the solution trajectory by guiding forward denoising and backward noise addition based on the proposed time step importance, enabling more effective exploration of the solution space to enhance generation performance; and (iii) Utilization of smoothing clipping and color balancing techniques to achieve stable and high-quality generation results at high guidance scales, thereby expanding the applicability of consistency distillation models in complex generation scenarios. We validated the effectiveness and flexibility of the adaptive sampling scheduler across various consistency distillation methods through comprehensive experimental evaluations. Experimental results consistently demonstrated significant improvements in generative performance, highlighting the strong adaptability achieved by our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.