Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

More Similar than Dissimilar: Modeling Annotators for Cross-Corpus Speech Emotion Recognition (2509.12295v1)

Published 15 Sep 2025 in cs.SD, cs.LG, and eess.AS

Abstract: Speech emotion recognition systems often predict a consensus value generated from the ratings of multiple annotators. However, these models have limited ability to predict the annotation of any one person. Alternatively, models can learn to predict the annotations of all annotators. Adapting such models to new annotators is difficult as new annotators must individually provide sufficient labeled training data. We propose to leverage inter-annotator similarity by using a model pre-trained on a large annotator population to identify a similar, previously seen annotator. Given a new, previously unseen, annotator and limited enroLLMent data, we can make predictions for a similar annotator, enabling off-the-shelf annotation of unseen data in target datasets, providing a mechanism for extremely low-cost personalization. We demonstrate our approach significantly outperforms other off-the-shelf approaches, paving the way for lightweight emotion adaptation, practical for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.