Papers
Topics
Authors
Recent
Search
2000 character limit reached

Collaborative P4-SDN DDoS Detection and Mitigation with Early-Exit Neural Networks

Published 15 Sep 2025 in cs.CR | (2509.12291v1)

Abstract: Distributed Denial of Service (DDoS) attacks pose a persistent threat to network security, requiring timely and scalable mitigation strategies. In this paper, we propose a novel collaborative architecture that integrates a P4-programmable data plane with an SDN control plane to enable real-time DDoS detection and response. At the core of our approach is a split early-exit neural network that performs partial inference in the data plane using a quantized Convolutional Neural Network (CNN), while deferring uncertain cases to a Gated Recurrent Unit (GRU) module in the control plane. This design enables high-speed classification at line rate with the ability to escalate more complex flows for deeper analysis. Experimental evaluation using real-world DDoS datasets demonstrates that our approach achieves high detection accuracy with significantly reduced inference latency and control plane overhead. These results highlight the potential of tightly coupled ML-P4-SDN systems for efficient, adaptive, and low-latency DDoS defense.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.