Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SSNCVX: A primal-dual semismooth Newton method for convex composite optimization problem (2509.11995v1)

Published 15 Sep 2025 in math.OC

Abstract: In this paper, we propose a uniform semismooth Newton-based algorithmic framework called SSNCVX for solving a broad class of convex composite optimization problems. By exploiting the augmented Lagrangian duality, we reformulate the original problem into a saddle point problem and characterize the optimality conditions via a semismooth system of nonlinear equations. The nonsmooth structure is handled internally without requiring problem specific transformation or introducing auxiliary variables. This design allows easy modifications to the model structure, such as adding linear, quadratic, or shift terms through simple interface-level updates. The proposed method features a single loop structure that simultaneously updates the primal and dual variables via a semismooth Newton step. Extensive numerical experiments on benchmark datasets show that SSNCVX outperforms state-of-the-art solvers in both robustness and efficiency across a wide range of problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: