Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-animal tracking in Transition: Comparative Insights into Established and Emerging Methods (2509.11873v1)

Published 15 Sep 2025 in cs.CV

Abstract: Precision livestock farming requires advanced monitoring tools to meet the increasing management needs of the industry. Computer vision systems capable of long-term multi-animal tracking (MAT) are essential for continuous behavioral monitoring in livestock production. MAT, a specialized subset of multi-object tracking (MOT), shares many challenges with MOT, but also faces domain-specific issues including frequent animal occlusion, highly similar appearances among animals, erratic motion patterns, and a wide range of behavior types. While some existing MAT tools are user-friendly and widely adopted, they often underperform compared to state-of-the-art MOT methods, which can result in inaccurate downstream tasks such as behavior analysis, health state estimation, and related applications. In this study, we benchmarked both MAT and MOT approaches for long-term tracking of pigs. We compared tools such as DeepLabCut and idTracker with MOT-based methods including ByteTrack, DeepSORT, cross-input consistency, and newer approaches like Track-Anything and PromptTrack. All methods were evaluated on a 10-minute pig tracking dataset. Our results demonstrate that, overall, MOT approaches outperform traditional MAT tools, even for long-term tracking scenarios. These findings highlight the potential of recent MOT techniques to enhance the accuracy and reliability of automated livestock tracking.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.