Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MSMA: Multi-Scale Feature Fusion For Multi-Attribute 3D Face Reconstruction From Unconstrained Images (2509.11763v1)

Published 15 Sep 2025 in cs.CV

Abstract: Reconstructing 3D face from a single unconstrained image remains a challenging problem due to diverse conditions in unconstrained environments. Recently, learning-based methods have achieved notable results by effectively capturing complex facial structures and details across varying conditions. Consequently, many existing approaches employ projection-based losses between generated and input images to constrain model training. However, learning-based methods for 3D face reconstruction typically require substantial amounts of 3D facial data, which is difficult and costly to obtain. Consequently, to reduce reliance on labeled 3D face datasets, many existing approaches employ projection-based losses between generated and input images to constrain model training. Nonetheless, despite these advancements, existing approaches frequently struggle to capture detailed and multi-scale features under diverse facial attributes and conditions, leading to incomplete or less accurate reconstructions. In this paper, we propose a Multi-Scale Feature Fusion with Multi-Attribute (MSMA) framework for 3D face reconstruction from unconstrained images. Our method integrates multi-scale feature fusion with a focus on multi-attribute learning and leverages a large-kernel attention module to enhance the precision of feature extraction across scales, enabling accurate 3D facial parameter estimation from a single 2D image. Comprehensive experiments on the MICC Florence, Facewarehouse and custom-collect datasets demonstrate that our approach achieves results on par with current state-of-the-art methods, and in some instances, surpasses SOTA performance across challenging conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.