Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dual Shellability of Admissible Set and Cohen-Macaulayness of Local Models (2509.11581v1)

Published 15 Sep 2025 in math.AG and math.NT

Abstract: We prove G\"ortz's combinatorial conjecture \cite{Go01} on dual shellability of admissible sets in Iwahori-Weyl groups, proving that the augmented admissible set $\widehat{\mathrm{Adm}}(\mu)$ is dual shellable for any dominant coweight $\mu$. This provides a uniform, elementary approach to establishing Cohen-Macaulayness of the special fibers of the local models with Iwahori level structure for all reductive groups-including residue characteristic $2$ and non-reduced root systems-circumventing geometric methods. Local models, which encode singularities of Shimura varieties and moduli of shtukas, have seen extensive study since their introduction by Rapoport-Zink, with Cohen-Macaulayness remaining a central open problem. While previous work relied on case-specific geometric analyses (e.g., Frobenius splittings \cite{HR23} or compactifications \cite{He13}), our combinatorial proof yields an explicit labeling that constructs the special fiber by sequentially adding irreducible components while preserving Cohen-Macaulayness at each step, a new result even for split groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.