Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MedicalOS: An LLM Agent based Operating System for Digital Healthcare (2509.11507v1)

Published 15 Sep 2025 in cs.AI

Abstract: Decades' advances in digital health technologies, such as electronic health records, have largely streamlined routine clinical processes. Yet, most these systems are still hard to learn and use: Clinicians often face the burden of managing multiple tools, repeating manual actions for each patient, navigating complicated UI trees to locate functions, and spending significant time on administration instead of caring for patients. The recent rise of LLM based agents demonstrates exceptional capability in coding and computer operation, revealing the potential for humans to interact with operating systems and software not by direct manipulation, but by instructing agents through natural language. This shift highlights the need for an abstraction layer, an agent-computer interface, that translates human language into machine-executable commands. In digital healthcare, however, requires a more domain-specific abstractions that strictly follow trusted clinical guidelines and procedural standards to ensure safety, transparency, and compliance. To address this need, we present \textbf{MedicalOS}, a unified agent-based operational system designed as such a domain-specific abstract layer for healthcare. It translates human instructions into pre-defined digital healthcare commands, such as patient inquiry, history retrieval, exam management, report generation, referrals, treatment planning, that we wrapped as off-the-shelf tools using machine languages (e.g., Python, APIs, MCP, Linux). We empirically validate MedicalOS on 214 patient cases across 22 specialties, demonstrating high diagnostic accuracy and confidence, clinically sound examination requests, and consistent generation of structured reports and medication recommendations. These results highlight MedicalOS as a trustworthy and scalable foundation for advancing workflow automation in clinical practice.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.