Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Enhancing ML Models Interpretability for Credit Scoring (2509.11389v1)

Published 14 Sep 2025 in cs.LG and q-fin.RM

Abstract: Predicting default is essential for banks to ensure profitability and financial stability. While modern machine learning methods often outperform traditional regression techniques, their lack of transparency limits their use in regulated environments. Explainable artificial intelligence (XAI) has emerged as a solution in domains like credit scoring. However, most XAI research focuses on post-hoc interpretation of black-box models, which does not produce models lightweight or transparent enough to meet regulatory requirements, such as those for Internal Ratings-Based (IRB) models. This paper proposes a hybrid approach: post-hoc interpretations of black-box models guide feature selection, followed by training glass-box models that maintain both predictive power and transparency. Using the Lending Club dataset, we demonstrate that this approach achieves performance comparable to a benchmark black-box model while using only 10 features - an 88.5% reduction. In our example, SHapley Additive exPlanations (SHAP) is used for feature selection, eXtreme Gradient Boosting (XGBoost) serves as the benchmark and the base black-box model, and Explainable Boosting Machine (EBM) and Penalized Logistic Tree Regression (PLTR) are the investigated glass-box models. We also show that model refinement using feature interaction analysis, correlation checks, and expert input can further enhance model interpretability and robustness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube