Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Omniprediction with Long-Term Constraints (2509.11357v1)

Published 14 Sep 2025 in cs.LG and cs.GT

Abstract: We introduce and study the problem of online omniprediction with long-term constraints. At each round, a forecaster is tasked with generating predictions for an underlying (adaptively, adversarially chosen) state that are broadcast to a collection of downstream agents, who must each choose an action. Each of the downstream agents has both a utility function mapping actions and state to utilities, and a vector-valued constraint function mapping actions and states to vector-valued costs. The utility and constraint functions can arbitrarily differ across downstream agents. Their goal is to choose actions that guarantee themselves no regret while simultaneously guaranteeing that they do not cumulatively violate the constraints across time. We show how to make a single set of predictions so that each of the downstream agents can guarantee this by acting as a simple function of the predictions, guaranteeing each of them $\tilde{O}(\sqrt{T})$ regret and $O(1)$ cumulative constraint violation. We also show how to extend our guarantees to arbitrary intersecting contextually defined \emph{subsequences}, guaranteeing each agent both regret and constraint violation bounds not just marginally, but simultaneously on each subsequence, against a benchmark set of actions simultaneously tailored to each subsequence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube