Promoting Shape Bias in CNNs: Frequency-Based and Contrastive Regularization for Corruption Robustness (2509.11355v1)
Abstract: Convolutional Neural Networks (CNNs) excel at image classification but remain vulnerable to common corruptions that humans handle with ease. A key reason for this fragility is their reliance on local texture cues rather than global object shapes -- a stark contrast to human perception. To address this, we propose two complementary regularization strategies designed to encourage shape-biased representations and enhance robustness. The first introduces an auxiliary loss that enforces feature consistency between original and low-frequency filtered inputs, discouraging dependence on high-frequency textures. The second incorporates supervised contrastive learning to structure the feature space around class-consistent, shape-relevant representations. Evaluated on the CIFAR-10-C benchmark, both methods improve corruption robustness without degrading clean accuracy. Our results suggest that loss-level regularization can effectively steer CNNs toward more shape-aware, resilient representations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.