Construction of solutions for a critical elliptic system of Hamiltonian type (2509.11251v1)
Abstract: We consider the following nonlinear elliptic system of Hamiltonian type with critical exponents: \begin{equation*}\left{\begin{align*} -\Delta u + V(|y'|,y'') u = vp, \;\; \text{in} \;\; \mathbb{R}N,\ -\Delta v + V(|y'|,y'') v = uq, \;\; \text{in} \;\; \mathbb{R}N,\ u, v > 0 , (u,v) \in (\dot{W}{2,\frac{p+1}{p}} (\mathbb{R}N) \cap L2(\mathbb{R}N)) \times (\dot{W}{2,\frac{q+1}{q}} (\mathbb{R}N) \cap L2(\mathbb{R}N)) ,\end{align*}\right. \end{equation*} where $(y', y'') \in \mathbb{R}2 \times \mathbb{R}{N-2}$ and $V(|y'|, y'')\not\equiv 0$ is a bounded non-negative function in $\mathbb{R}_+\times \mathbb{R}{N-2}$, $p,q>1$ satisfying $$\frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}.$$ By using a finite reduction argument and local Pohozaev identities, under the assumption that $N\geq 5$, $(p,q)$ lies in the certain range and $r2V(r,y'')$ has a stable critical point, we prove that the above problem has infinitely many solutions whose energy can be made arbitrarily large.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.