Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Elliptic Equations and Systems involving critical Hardy-Sobolev exponents (non-limit case) (1505.07392v1)

Published 27 May 2015 in math.AP

Abstract: Let $\Omega\subset \RN$ ($N\geq 3$) be an open domain (may be unbounded) with $0\in \partial\Omega$ and $\partial\Omega$ be of $C2$ at $0$ with the negative mean curvature $H(0)$. By using variational methods, we consider the following elliptic systems involving multiple Hardy-Sobolev critical exponents, $$\begin{cases} -\Delta u+\lambda*\frac{u}{|x|{\sigma_0}}-\lambda_1 \frac{|u|{2*(s_1)-2}u}{|x|{s_1}}=\lambda \frac{1}{|x|{s_2}}|u|{\alpha-2}u|v|\beta\quad &\hbox{in}\;\Omega,\ -\Delta v+\mu*\frac{v}{|x|{\eta_0}}-\mu_1 \frac{|v|{2*(s_1)-2}v}{|x|{s_1}}=\mu \frac{1}{|x|{s_2}}|u|{\alpha}|v|{\beta-2}v\quad &\hbox{in}\;\Omega,\ (u,v)\in D_{0}{1,2}(\Omega)\times D_{0}{1,2}(\Omega), \end{cases}$$ where $ 0\leq \sigma_0, \eta_0, s_2<2, s_1\in (0,2);$ the parameters $ \lambda*\neq 0, \mu*\neq 0, \lambda_1>0, \mu_1>0, \lambda\mu>0$; $\alpha,\beta>1$ satisfying $\alpha+\beta \leq 2*(s_2)$. Here, $2*(s):=\frac{2(N-s)}{N-2}$ is the critical Hardy-Sobolev exponent. We obtain the existence and nonexistence of ground state solution under different specific assumptions. As the by-product, we study \be\lab{zou=a1} \begin{cases} &\Delta u+\lambda \frac{up}{|x|{s_1}}+\frac{u{2*(s_2)-1}}{|x|{s_2}}=0\;\quad \hbox{in}\;\Omega,\ &u(x)>0\;\hbox{in}\;\Omega,\ & u(x)=0\;\hbox{on}\;\partial\Omega, \end{cases} \ee we also obtain the existence and nonexistence of solution under different hypotheses. In particular, we give a partial answers to a generalized open problem proposed by Y. Y. Li and C. S. Lin (ARMA, 2012). Around the above two types of equation or systems, we systematically study the elliptic equations which have multiple singular terms and are defined on any open domain. We establish some fundamental results. \vskip0.23in {\it Key words:} Elliptic system, Ground state, Hardy-Sobolev exponent.

Summary

We haven't generated a summary for this paper yet.