Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamical Low-Rank Approximations for Kalman Filtering (2509.11210v1)

Published 14 Sep 2025 in math.NA and cs.NA

Abstract: We propose a dynamical low rank approximation of the Kalman-Bucy process (DLR-KBP), which evolves the filtering distribution of a partially continuously observed linear SDE on a small time-varying subspace at reduced computational cost. This reduction is valid in presence of small noise and when the filtering distribution concentrates around a low dimensional subspace. We further extend this approach to a DLR-ENKF process, where particles are evolved in a low dimensional time-varying subspace at reduced cost. This allows for a significantly larger ensemble size compared to standard EnKF at equivalent cost, thereby lowering the Monte Carlo error and improving filter accuracy. Theoretical properties of the DLR-KBP and DLR-ENKF are investigated, including a propagation of chaos property. Numerical experiments demonstrate the effectiveness of the technique.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.