Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Chameleon: Taming Dynamic Operator Sequences for Memory-Intensive LLM Training (2509.11076v1)

Published 14 Sep 2025 in cs.DC

Abstract: The increasing size of LLMs has led to a surge in memory requirements during training, often exceeding the capacity of high-bandwidth memory (HBM). Swap-based memory optimization incurs neither accuracy loss nor additional end-to-end overhead when effectively overlapped, thus being an attractive solution. However, existing swap methods assume consistent operator sequences, which is impractical in Eager Mode, where operator sequences can vary during change. We propose Chameleon, which redesigns the end-to-end process of swap-based memory optimization and is the first work to consider varying operator sequences in Eager Mode. Chameleon (i) introduces a lightweight online profiler to enable continuous profiling for monitoring operator sequences, (ii) generates effective swap policies with limited operator information, and (iii) optimizes the policy execution module for accurate policy application and better performance. Experimental results demonstrate that Chameleon reduces profiling overhead by 84.25%, enables training models up to 4x larger than hardware memory while adapting to changes in operator sequences, improves performance by up to 38.94% compared to recomputation or high-degree parallelism.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube