Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The System Description of CPS Team for Track on Driving with Language of CVPR 2024 Autonomous Grand Challenge (2509.11071v1)

Published 14 Sep 2025 in cs.CV, cs.AI, and cs.CL

Abstract: This report outlines our approach using vision LLM systems for the Driving with Language track of the CVPR 2024 Autonomous Grand Challenge. We have exclusively utilized the DriveLM-nuScenes dataset for training our models. Our systems are built on the LLaVA models, which we enhanced through fine-tuning with the LoRA and DoRA methods. Additionally, we have integrated depth information from open-source depth estimation models to enrich the training and inference processes. For inference, particularly with multiple-choice and yes/no questions, we adopted a Chain-of-Thought reasoning approach to improve the accuracy of the results. This comprehensive methodology enabled us to achieve a top score of 0.7799 on the validation set leaderboard, ranking 1st on the leaderboard.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.