Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Rethinking Human Preference Evaluation of LLM Rationales (2509.11026v1)

Published 14 Sep 2025 in cs.AI and cs.CL

Abstract: LLMs often generate natural language rationales -- free-form explanations that help improve performance on complex reasoning tasks and enhance interpretability for human users. However, evaluating these rationales remains challenging. While recent work has relied on binary preference judgments from humans or LLM judges, such evaluations are often opaque and coarse-grained, offering limited insight into what makes one rationale better than another. In this work, we rethink preference evaluation for LLM-generated rationales by asking: (1) What attributes define good rationales? (2) Can human preferences be explained by these attributes? (3) Can attribute-based evaluation overcome the limitations of binary comparisons? We identify a set of key rationale attributes from prior literature and assess them using automatic metrics, LLM judgments, and human annotations. We then analyze two standard human preference datasets MT Bench and Chatbot Arena using SHAP to identify which attributes best explain human preference outcomes. Finally, we re-evaluate model-generated rationales using attribute-specific ELO scores, revealing more nuanced model comparisons and insights. Our findings suggest that fine-grained attribute evaluations can better characterize rationale quality and guide future research toward more interpretable and reliable evaluation practices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube