Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Policy-Driven Transfer Learning in Resource-Limited Animal Monitoring (2509.10995v1)

Published 13 Sep 2025 in cs.CV

Abstract: Animal health monitoring and population management are critical aspects of wildlife conservation and livestock management that increasingly rely on automated detection and tracking systems. While Unmanned Aerial Vehicle (UAV) based systems combined with computer vision offer promising solutions for non-invasive animal monitoring across challenging terrains, limited availability of labeled training data remains an obstacle in developing effective deep learning (DL) models for these applications. Transfer learning has emerged as a potential solution, allowing models trained on large datasets to be adapted for resource-limited scenarios such as those with limited data. However, the vast landscape of pre-trained neural network architectures makes it challenging to select optimal models, particularly for researchers new to the field. In this paper, we propose a reinforcement learning (RL)-based transfer learning framework that employs an upper confidence bound (UCB) algorithm to automatically select the most suitable pre-trained model for animal detection tasks. Our approach systematically evaluates and ranks candidate models based on their performance, streamlining the model selection process. Experimental results demonstrate that our framework achieves a higher detection rate while requiring significantly less computational time compared to traditional methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.