Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GoldenTransformer: A Modular Fault Injection Framework for Transformer Robustness Research (2509.10790v1)

Published 13 Sep 2025 in cs.LG and cs.AI

Abstract: Transformers have become the foundation for a wide range of state--of--the--art models across natural language processing, computer vision, and other machine learning domains. Despite their widespread deployment, the robustness of these models under fault conditions remains underexplored. We present GoldenTransformer, a modular and extensible fault injection framework designed to evaluate the resiliency of LLMs to induced hardware faults. GoldenTransformer offers a unified Python-based platform for injecting diverse classes of faults--such as weight corruption, activation injections, and attention--level disruptions--into pretrained transformer--based models. Inspired by the GoldenEye simulator for DNNs, our framework focuses on the unique challenges of working with large transformer architectures, including considerations such as structural complexity, latent dependencies, and nonuniform layer definitions. GoldenTransformer is built atop PyTorch and HuggingFace Transformers, and it supports experiment reproducibility, metric logging, and visualization out of the box. We detail the technical design and use of GoldenTransformer and demonstrate through several example experiments on classification and generation tasks. By enabling controlled injection of faults at multiple logical and structural points in a transformer, GoldenTransformer offers researchers and practitioners a valuable tool for model robustness analysis and for guiding dependable system design in real-world LLM applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.