Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Understanding AI Evaluation Patterns: How Different GPT Models Assess Vision-Language Descriptions (2509.10707v1)

Published 12 Sep 2025 in cs.AI and cs.CL

Abstract: As AI systems increasingly evaluate other AI outputs, understanding their assessment behavior becomes crucial for preventing cascading biases. This study analyzes vision-language descriptions generated by NVIDIA's Describe Anything Model and evaluated by three GPT variants (GPT-4o, GPT-4o-mini, GPT-5) to uncover distinct "evaluation personalities" the underlying assessment strategies and biases each model demonstrates. GPT-4o-mini exhibits systematic consistency with minimal variance, GPT-4o excels at error detection, while GPT-5 shows extreme conservatism with high variability. Controlled experiments using Gemini 2.5 Pro as an independent question generator validate that these personalities are inherent model properties rather than artifacts. Cross-family analysis through semantic similarity of generated questions reveals significant divergence: GPT models cluster together with high similarity while Gemini exhibits markedly different evaluation strategies. All GPT models demonstrate a consistent 2:1 bias favoring negative assessment over positive confirmation, though this pattern appears family-specific rather than universal across AI architectures. These findings suggest that evaluation competence does not scale with general capability and that robust AI assessment requires diverse architectural perspectives.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: