Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Side-channel Inference of User Activities in AR/VR Using GPU Profiling (2509.10703v1)

Published 12 Sep 2025 in cs.CR and cs.AR

Abstract: Over the past decade, AR/VR devices have drastically changed how we interact with the digital world. Users often share sensitive information, such as their location, browsing history, and even financial data, within third-party apps installed on these devices, assuming a secure environment protected from malicious actors. Recent research has revealed that malicious apps can exploit such capabilities and monitor benign apps to track user activities, leveraging fine-grained profiling tools, such as performance counter APIs. However, app-to-app monitoring is not feasible on all AR/VR devices (e.g., Meta Quest), as a concurrent standalone app execution is disabled. In this paper, we present OVRWatcher, a novel side-channel primitive for AR/VR devices that infers user activities by monitoring low-resolution (1Hz) GPU usage via a background script, unlike prior work that relies on high-resolution profiling. OVRWatcher captures correlations between GPU metrics and 3D object interactions under varying speeds, distances, and rendering scenarios, without requiring concurrent app execution, access to application data, or additional SDK installations. We demonstrate the efficacy of OVRWatcher in fingerprinting both standalone AR/VR and WebXR applications. OVRWatcher also distinguishes virtual objects, such as products in immersive shopping apps selected by real users and the number of participants in virtual meetings, thereby revealing users' product preferences and potentially exposing confidential information from those meetings. OVRWatcher achieves over 99% accuracy in app fingerprinting and over 98% accuracy in object-level inference.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.