Papers
Topics
Authors
Recent
2000 character limit reached

CrunchLLM: Multitask LLMs for Structured Business Reasoning and Outcome Prediction (2509.10698v1)

Published 12 Sep 2025 in cs.LG and cs.CV

Abstract: Predicting the success of start-up companies, defined as achieving an exit through acquisition or IPO, is a critical problem in entrepreneurship and innovation research. Datasets such as Crunchbase provide both structured information (e.g., funding rounds, industries, investor networks) and unstructured text (e.g., company descriptions), but effectively leveraging this heterogeneous data for prediction remains challenging. Traditional machine learning approaches often rely only on structured features and achieve moderate accuracy, while LLMs offer rich reasoning abilities but struggle to adapt directly to domain-specific business data. We present \textbf{CrunchLLM}, a domain-adapted LLM framework for startup success prediction. CrunchLLM integrates structured company attributes with unstructured textual narratives and applies parameter-efficient fine-tuning strategies alongside prompt optimization to specialize foundation models for entrepreneurship data. Our approach achieves accuracy exceeding 80\% on Crunchbase startup success prediction, significantly outperforming traditional classifiers and baseline LLMs. Beyond predictive performance, CrunchLLM provides interpretable reasoning traces that justify its predictions, enhancing transparency and trustworthiness for financial and policy decision makers. This work demonstrates how adapting LLMs with domain-aware fine-tuning and structured--unstructured data fusion can advance predictive modeling of entrepreneurial outcomes. CrunchLLM contributes a methodological framework and a practical tool for data-driven decision making in venture capital and innovation policy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.