Papers
Topics
Authors
Recent
2000 character limit reached

pySigLib -- Fast Signature-Based Computations on CPU and GPU (2509.10613v1)

Published 12 Sep 2025 in cs.LG, cs.MS, and stat.ML

Abstract: Signature-based methods have recently gained significant traction in machine learning for sequential data. In particular, signature kernels have emerged as powerful discriminators and training losses for generative models on time-series, notably in quantitative finance. However, existing implementations do not scale to the dataset sizes and sequence lengths encountered in practice. We present pySigLib, a high-performance Python library offering optimised implementations of signatures and signature kernels on CPU and GPU, fully compatible with PyTorch's automatic differentiation. Beyond an efficient software stack for large-scale signature-based computation, we introduce a novel differentiation scheme for signature kernels that delivers accurate gradients at a fraction of the runtime of existing libraries.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.