Papers
Topics
Authors
Recent
2000 character limit reached

MIDOG 2025 Track 2: A Deep Learning Model for Classification of Atypical and Normal Mitotic Figures under Class and Hardness Imbalances (2509.10502v1)

Published 1 Sep 2025 in eess.IV, cs.CV, and q-bio.QM

Abstract: Motivation: Accurate classification of mitotic figures into normal and atypical types is crucial for tumor prognostication in digital pathology. However, developing robust deep learning models for this task is challenging due to the subtle morphological differences, as well as significant class and hardness imbalances in real-world histopathology datasets. Methods: We propose a novel deep learning approach based on a ResNet backbone with specialized classification heads. Our architecture uniquely models both the mitotic figure phenotype and the instance difficulty simultaneously. This method is specifically designed to handle the challenges of diverse tissue types, scanner variability, and imbalanced data. We employed focal loss to effectively mitigate the pronounced class imbalance, and a comprehensive data augmentation pipeline was implemented to enhance the model's robustness and generalizability. Results: Our approach demonstrated strong and consistent performance. In a 5-fold cross-validation on the MIDOG 2025 Track 2 dataset, it achieved a mean balanced accuracy of 0.8744 +/- 0.0093 and an ROC AUC of 0.9505 +/- 0.029. The model showed robust generalization across preliminary leaderboard evaluations, achieving an overall balanced accuracy of 0.8736 +/- 0.0204. Conclusion: The proposed method offers a reliable and generalizable solution for the classification of atypical and normal mitotic figures. By addressing the inherent challenges of real world data, our approach has the potential to support precise prognostic assessments in clinical practice and improve consistency in pathological diagnosis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.