Papers
Topics
Authors
Recent
2000 character limit reached

ARMA Block: A CNN-Based Autoregressive and Moving Average Module for Long-Term Time Series Forecasting (2509.10324v1)

Published 12 Sep 2025 in cs.LG

Abstract: This paper proposes a simple yet effective convolutional module for long-term time series forecasting. The proposed block, inspired by the Auto-Regressive Integrated Moving Average (ARIMA) model, consists of two convolutional components: one for capturing the trend (autoregression) and the other for refining local variations (moving average). Unlike conventional ARIMA, which requires iterative multi-step forecasting, the block directly performs multi-step forecasting, making it easily extendable to multivariate settings. Experiments on nine widely used benchmark datasets demonstrate that our method ARMA achieves competitive accuracy, particularly on datasets exhibiting strong trend variations, while maintaining architectural simplicity. Furthermore, analysis shows that the block inherently encodes absolute positional information, suggesting its potential as a lightweight replacement for positional embeddings in sequential models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.