Papers
Topics
Authors
Recent
2000 character limit reached

KAN-SR: A Kolmogorov-Arnold Network Guided Symbolic Regression Framework (2509.10089v1)

Published 12 Sep 2025 in cs.LG

Abstract: We introduce a novel symbolic regression framework, namely KAN-SR, built on Kolmogorov Arnold Networks (KANs) which follows a divide-and-conquer approach. Symbolic regression searches for mathematical equations that best fit a given dataset and is commonly solved with genetic programming approaches. We show that by using deep learning techniques, more specific KANs, and combining them with simplification strategies such as translational symmetries and separabilities, we are able to recover ground-truth equations of the Feynman Symbolic Regression for Scientific Discovery (SRSD) dataset. Additionally, we show that by combining the proposed framework with neural controlled differential equations, we are able to model the dynamics of an in-silico bioprocess system precisely, opening the door for the dynamic modeling of other engineering systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.