Papers
Topics
Authors
Recent
2000 character limit reached

BEVTraj: Map-Free End-to-End Trajectory Prediction in Bird's-Eye View with Deformable Attention and Sparse Goal Proposals (2509.10080v1)

Published 12 Sep 2025 in cs.CV

Abstract: In autonomous driving, trajectory prediction is essential for ensuring safe and efficient navigation. To improve prediction accuracy, recent approaches often rely on pre-built high-definition (HD) maps or real-time local map construction modules to incorporate static environmental information. However, pre-built HD maps are limited to specific regions and cannot adapt to transient changes. In addition, local map construction modules, which recognize only predefined elements, may fail to capture critical scene details or introduce errors that degrade prediction performance. To overcome these limitations, we propose Bird's-Eye View Trajectory Prediction (BEVTraj), a novel trajectory prediction framework that operates directly in the bird's-eye view (BEV) space utilizing real-time sensor data without relying on any pre-built maps. The BEVTraj leverages deformable attention to efficiently extract relevant context from dense BEV features. Furthermore, we introduce a Sparse Goal Candidate Proposal (SGCP) module, which enables full end-to-end prediction without requiring any post-processing steps. Extensive experiments demonstrate that the BEVTraj achieves performance comparable to state-of-the-art HD map-based models while offering greater flexibility by eliminating the dependency on pre-built maps. The source code is available at https://github.com/Kongminsang/bevtraj.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub