Papers
Topics
Authors
Recent
2000 character limit reached

Detection of Anomalous Behavior in Robot Systems Based on Machine Learning (2509.09953v1)

Published 12 Sep 2025 in cs.RO

Abstract: Ensuring the safe and reliable operation of robotic systems is paramount to prevent potential disasters and safeguard human well-being. Despite rigorous design and engineering practices, these systems can still experience malfunctions, leading to safety risks. In this study, we present a machine learning-based approach for detecting anomalies in system logs to enhance the safety and reliability of robotic systems. We collected logs from two distinct scenarios using CoppeliaSim and comparatively evaluated several machine learning models, including Logistic Regression (LR), Support Vector Machine (SVM), and an Autoencoder. Our system was evaluated in a quadcopter context (Context 1) and a Pioneer robot context (Context 2). Results showed that while LR demonstrated superior performance in Context 1, the Autoencoder model proved to be the most effective in Context 2. This highlights that the optimal model choice is context-dependent, likely due to the varying complexity of anomalies across different robotic platforms. This research underscores the value of a comparative approach and demonstrates the particular strengths of autoencoders for detecting complex anomalies in robotic systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.