Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SLD-Spec: Enhancement LLM-assisted Specification Generation for Complex Loop Functions via Program Slicing and Logical Deletion (2509.09917v1)

Published 12 Sep 2025 in cs.SE

Abstract: Automatically generating formal specifications from program code can greatly enhance the efficiency of program verification and enable end-to-end automation from requirements to reliable software. However, existing LLM-based approaches often struggle with programs that include complex loop structures, leading to irrelevant specifications. Moreover, the rigorous proof obligations and design constraints imposed by verification tools can further result in incomplete and ambiguous specifications. To address these challenges, we propose SLD-Spec, an LLM-assisted specification generation method tailored for programs with complex loop constructs. SLD-Spec introduces two novel phases into the traditional specification generation framework: (1) A slicing phase, which decomposes each function into code fragments containing independent loop structures, thereby reducing the complexity of specification generation; and (2) A logical deletion phase, which applies LLM-based reasoning to filter out incorrect candidate specifications--especially those not easily identified by verification tool--while retaining valid ones. Experimental results show that on the simple dataset, SLD-Spec successfully verifies five more programs than the state-of-the-art AutoSpec and reduces runtime by 23.73%. To address the limitations of existing research, we manually construct a dataset comprising four categories of complex loop programs. On this dataset, SLD-Spec significantly improves the correctness, relevance, and completeness of generated specifications compared to baseline methods, enabling 95.1% of assertions and 90.91% of programs to pass verification. Ablation studies further reveal that logical deletion is critical for enhancing specification correctness and relevance, while program slicing contributes significantly to specification completeness. Our code and data are publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: