Papers
Topics
Authors
Recent
2000 character limit reached

Self-Augmented Robot Trajectory: Efficient Imitation Learning via Safe Self-augmentation with Demonstrator-annotated Precision (2509.09893v1)

Published 11 Sep 2025 in cs.RO and cs.AI

Abstract: Imitation learning is a promising paradigm for training robot agents; however, standard approaches typically require substantial data acquisition -- via numerous demonstrations or random exploration -- to ensure reliable performance. Although exploration reduces human effort, it lacks safety guarantees and often results in frequent collisions -- particularly in clearance-limited tasks (e.g., peg-in-hole) -- thereby, necessitating manual environmental resets and imposing additional human burden. This study proposes Self-Augmented Robot Trajectory (SART), a framework that enables policy learning from a single human demonstration, while safely expanding the dataset through autonomous augmentation. SART consists of two stages: (1) human teaching only once, where a single demonstration is provided and precision boundaries -- represented as spheres around key waypoints -- are annotated, followed by one environment reset; (2) robot self-augmentation, where the robot generates diverse, collision-free trajectories within these boundaries and reconnects to the original demonstration. This design improves the data collection efficiency by minimizing human effort while ensuring safety. Extensive evaluations in simulation and real-world manipulation tasks show that SART achieves substantially higher success rates than policies trained solely on human-collected demonstrations. Video results available at https://sites.google.com/view/sart-il .

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.