Topic-Guided Reinforcement Learning with LLMs for Enhancing Multi-Document Summarization (2509.09852v1)
Abstract: A key challenge in Multi-Document Summarization (MDS) is effectively integrating information from multiple sources while maintaining coherence and topical relevance. While LLMs have shown impressive results in single-document summarization, their performance on MDS still leaves room for improvement. In this paper, we propose a topic-guided reinforcement learning approach to improve content selection in MDS. We first show that explicitly prompting models with topic labels enhances the informativeness of the generated summaries. Building on this insight, we propose a novel topic reward within the Group Relative Policy Optimization (GRPO) framework to measure topic alignment between the generated summary and source documents. Experimental results on the Multi-News and Multi-XScience datasets demonstrate that our method consistently outperforms strong baselines, highlighting the effectiveness of leveraging topical cues in MDS.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.