Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fine-Grained Cross-View Localization via Local Feature Matching and Monocular Depth Priors (2509.09792v1)

Published 11 Sep 2025 in cs.CV

Abstract: We propose an accurate and highly interpretable fine-grained cross-view localization method that estimates the 3 Degrees of Freedom pose of a ground-level image by matching its local features with a reference aerial image. Previous methods typically transform the ground image into a bird's-eye view (BEV) representation and then align it with the aerial image for localization. However, this transformation often leads to information loss due to perspective distortion or compression of height information, thereby degrading alignment quality with the aerial view. In contrast, our method directly establishes correspondences between ground and aerial images and lifts only the matched keypoints to BEV space using monocular depth prior. Notably, modern depth predictors can provide reliable metric depth when the test samples are similar to the training data. When the depth distribution differs, they still produce consistent relative depth, i.e., depth accurate up to an unknown scale. Our method supports both metric and relative depth. It employs a scale-aware Procrustes alignment to estimate the camera pose from the correspondences and optionally recover the scale when using relative depth. Experimental results demonstrate that, with only weak supervision on camera pose, our method learns accurate local feature correspondences and achieves superior localization performance under challenging conditions, such as cross-area generalization and unknown orientation. Moreover, our method is compatible with various relative depth models without requiring per-model finetuning. This flexibility, combined with strong localization performance, makes it well-suited for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.