Powering Job Search at Scale: LLM-Enhanced Query Understanding in Job Matching Systems (2509.09690v1)
Abstract: Query understanding is essential in modern relevance systems, where user queries are often short, ambiguous, and highly context-dependent. Traditional approaches often rely on multiple task-specific Named Entity Recognition models to extract structured facets as seen in job search applications. However, this fragmented architecture is brittle, expensive to maintain, and slow to adapt to evolving taxonomies and language patterns. In this paper, we introduce a unified query understanding framework powered by a LLM, designed to address these limitations. Our approach jointly models the user query and contextual signals such as profile attributes to generate structured interpretations that drive more accurate and personalized recommendations. The framework improves relevance quality in online A/B testing while significantly reducing system complexity and operational overhead. The results demonstrate that our solution provides a scalable and adaptable foundation for query understanding in dynamic web applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.