Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Personas within Parameters: Fine-Tuning Small Language Models with Low-Rank Adapters to Mimic User Behaviors (2509.09689v1)

Published 18 Aug 2025 in cs.IR, cs.AI, cs.CL, and cs.LG

Abstract: A long-standing challenge in developing accurate recommendation models is simulating user behavior, mainly due to the complex and stochastic nature of user interactions. Towards this, one promising line of work has been the use of LLMs for simulating user behavior. However, aligning these general-purpose large pre-trained models with user preferences necessitates: (i) effectively and continously parsing large-scale tabular user-item interaction data, (ii) overcoming pre-training-induced inductive biases to accurately learn user specific knowledge, and (iii) achieving the former two at scale for millions of users. While most previous works have focused on complex methods to prompt an LLM or fine-tune it on tabular interaction datasets, our approach shifts the focus to extracting robust textual user representations using a frozen LLM and simulating cost-effective, resource-efficient user agents powered by fine-tuned Small LLMs (SLMs). Further, we showcase a method for training multiple low-rank adapters for groups of users or \textit{persona}, striking an optimal balance between scalability and performance of user behavior agents. Our experiments provide compelling empirical evidence of the efficacy of our methods, demonstrating that user agents developed using our approach have the potential to bridge the gap between offline metrics and real-world performance of recommender systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.