A neural drift-plus-penalty algorithm for network power allocation and routing (2509.09637v1)
Abstract: The drift-plus-penalty method is a Lyapunov optimisation technique commonly applied to network routing problems. It reduces the original stochastic planning task to a sequence of greedy optimizations, enabling the design of distributed routing algorithms which stabilize data queues while simultaneously optimizing a specified penalty function. While drift-plus-penalty methods have desirable asymptotic properties, they tend to incur higher network delay than alternative control methods, especially under light network load. In this work, we propose a learned variant of the drift-plus-penalty method that can preserve its theoretical guarantees, while being flexible enough to learn routing strategies directly from a model of the problem. Our approach introduces a novel mechanism for learning routing decisions and employs an optimal transport-based method for link scheduling. Applied to the joint task of transmit-power allocation and data routing, the method achieves consistent improvements over common baselines under a broad set of scenarios.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.