Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fluent but Unfeeling: The Emotional Blind Spots of Language Models (2509.09593v1)

Published 11 Sep 2025 in cs.CL and cs.AI

Abstract: The versatility of LLMs in natural language understanding has made them increasingly popular in mental health research. While many studies explore LLMs' capabilities in emotion recognition, a critical gap remains in evaluating whether LLMs align with human emotions at a fine-grained level. Existing research typically focuses on classifying emotions into predefined, limited categories, overlooking more nuanced expressions. To address this gap, we introduce EXPRESS, a benchmark dataset curated from Reddit communities featuring 251 fine-grained, self-disclosed emotion labels. Our comprehensive evaluation framework examines predicted emotion terms and decomposes them into eight basic emotions using established emotion theories, enabling a fine-grained comparison. Systematic testing of prevalent LLMs under various prompt settings reveals that accurately predicting emotions that align with human self-disclosed emotions remains challenging. Qualitative analysis further shows that while certain LLMs generate emotion terms consistent with established emotion theories and definitions, they sometimes fail to capture contextual cues as effectively as human self-disclosures. These findings highlight the limitations of LLMs in fine-grained emotion alignment and offer insights for future research aimed at enhancing their contextual understanding.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: