Papers
Topics
Authors
Recent
2000 character limit reached

Causal PDE-Control Models: A Structural Framework for Dynamic Portfolio Optimization (2509.09585v1)

Published 11 Sep 2025 in q-fin.PM

Abstract: Classical portfolio models collapse under structural breaks, while modern machine-learning allocators adapt flexibly but often at the cost of transparency and interpretability. This paper introduces Causal PDE-Control Models (CPCMs), a unifying framework that integrates causal inference, nonlinear filtering, and forward-backward partial differential equations for dynamic portfolio optimization. The framework delivers three theoretical advances: (i) the existence of conditional risk-neutral measures under evolving information sets; (ii) a projection-divergence duality that quantifies the stability cost of departing from the causal driver manifold; and (iii) causal completeness, establishing that a finite driver span can capture all systematic premia. Classical methods such as Markowitz, CAPM, and Black-Litterman appear as degenerate cases, while reinforcement learning and deep-hedging policies emerge as unconstrained, symmetry-breaking approximations. Empirically, CPCM solvers implemented with physics-informed neural networks achieve higher Sharpe ratios, lower turnover, and more persistent premia than both econometric and machine-learning benchmarks, using a global equity panel with more than 300 candidate drivers. By reframing portfolio optimization around structural causality and PDE control, CPCMs provide a rigorous, interpretable, and computationally tractable foundation for robust asset allocation under nonstationary conditions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 5 likes about this paper.