Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Low-degree lower bounds via almost orthonormal bases (2509.09353v1)

Published 11 Sep 2025 in stat.ML and cs.LG

Abstract: Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical--computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical--computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets