Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sharp Phase Transitions in Estimation with Low-Degree Polynomials (2502.14407v1)

Published 20 Feb 2025 in math.ST, cs.CC, cs.DS, math.PR, and stat.TH

Abstract: High-dimensional planted problems, such as finding a hidden dense subgraph within a random graph, often exhibit a gap between statistical and computational feasibility. While recovering the hidden structure may be statistically possible, it is conjectured to be computationally intractable in certain parameter regimes. A powerful approach to understanding this hardness involves proving lower bounds on the efficacy of low-degree polynomial algorithms. We introduce new techniques for establishing such lower bounds, leading to novel results across diverse settings: planted submatrix, planted dense subgraph, the spiked Wigner model, and the stochastic block model. Notably, our results address the estimation task -- whereas most prior work is limited to hypothesis testing -- and capture sharp phase transitions such as the "BBP" transition in the spiked Wigner model (named for Baik, Ben Arous, and P\'{e}ch\'{e}) and the Kesten-Stigum threshold in the stochastic block model. Existing work on estimation either falls short of achieving these sharp thresholds or is limited to polynomials of very low (constant or logarithmic) degree. In contrast, our results rule out estimation with polynomials of degree $n{\delta}$ where $n$ is the dimension and $\delta > 0$ is a constant, and in some cases we pin down the optimal constant $\delta$. Our work resolves open problems posed by Hopkins & Steurer (2017) and Schramm & Wein (2022), and provides rigorous support within the low-degree framework for conjectures by Abbe & Sandon (2018) and Lelarge & Miolane (2019).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com