ViRanker: A BGE-M3 & Blockwise Parallel Transformer Cross-Encoder for Vietnamese Reranking (2509.09131v1)
Abstract: This paper presents ViRanker, a cross-encoder reranking model tailored to the Vietnamese language. Built on the BGE-M3 encoder and enhanced with the Blockwise Parallel Transformer, ViRanker addresses the lack of competitive rerankers for Vietnamese, a low-resource language with complex syntax and diacritics. The model was trained on an 8 GB curated corpus and fine-tuned with hybrid hard-negative sampling to strengthen robustness. Evaluated on the MMARCO-VI benchmark, ViRanker achieves strong early-rank accuracy, surpassing multilingual baselines and competing closely with PhoRanker. By releasing the model openly on Hugging Face, we aim to support reproducibility and encourage wider adoption in real-world retrieval systems. Beyond Vietnamese, this study illustrates how careful architectural adaptation and data curation can advance reranking in other underrepresented languages.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.