Compass-v3: Scaling Domain-Specific LLMs for Multilingual E-Commerce in Southeast Asia (2509.09121v1)
Abstract: LLMs excel in general-domain applications, yet their performance often degrades in specialized tasks requiring domain-specific knowledge. E-commerce is particularly challenging, as its data are noisy, heterogeneous, multilingual, and highly dynamic. We present Compass-v3, a vertical-domain Mixture-of-Experts (MoE) model with 245B total parameters and 71B active per token, designed for Southeast Asian e-commerce. Compass-v3 adopts fewer but larger experts, combined with hardware-efficient optimizations-such as intra-node expert parallelism and a customized memcpy operator-to maximize GPU utilization. The model is trained on 12T tokens of curated multilingual corpora and large-scale synthetic e-commerce instructions using a mixed-training strategy. To enhance alignment, we propose Optimal-Transport Direct Preference Optimization (OTPO), which captures token-level distinctions and improves instruction adherence in commerce-specific scenarios. Extensive evaluations demonstrate that Compass-v3 delivers state-of-the-art e-commerce performance, surpassing DeepSeek-V3.1, GPT-4 series, and Qwen3-235B. Moreover, Compass-v3 demonstrates strong multilingual capability across low-resource Southeast Asian languages (Indonesian, Thai, Filipino, Vietnamese, Malay, Taglog) and Portuguese while sustaining competitive performance on general benchmarks. It has already been widely applied in Shopee's industrial-scale e-commerce platform and is gradually replacing OpenAI's traffic, now accounting for over 70\% of total LLM usage, highlighting its dual strengths in specialized commerce expertise and broad linguistic competence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.