Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast attention mechanisms: a tale of parallelism (2509.09001v1)

Published 10 Sep 2025 in cs.LG

Abstract: Transformers have the representational capacity to simulate Massively Parallel Computation (MPC) algorithms, but they suffer from quadratic time complexity, which severely limits their scalability. We introduce an efficient attention mechanism called Approximate Nearest Neighbor Attention (ANNA) with sub-quadratic time complexity. We prove that ANNA-transformers (1) retain the expressive power previously established for standard attention in terms of matching the capabilities of MPC algorithms, and (2) can solve key reasoning tasks such as Match2 and $k$-hop with near-optimal depth. Using the MPC framework, we further prove that constant-depth ANNA-transformers can simulate constant-depth low-rank transformers, thereby providing a unified way to reason about a broad class of efficient attention approximations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv