Papers
Topics
Authors
Recent
2000 character limit reached

Corruption-Tolerant Asynchronous Q-Learning with Near-Optimal Rates (2509.08933v1)

Published 10 Sep 2025 in cs.LG, cs.SY, eess.SY, and math.OC

Abstract: We consider the problem of learning the optimal policy in a discounted, infinite-horizon reinforcement learning (RL) setting where the reward signal is subject to adversarial corruption. Such corruption, which may arise from extreme noise, sensor faults, or malicious attacks, can severely degrade the performance of classical algorithms such as Q-learning. To address this challenge, we propose a new provably robust variant of the Q-learning algorithm that operates effectively even when a fraction of the observed rewards are arbitrarily perturbed by an adversary. Under the asynchronous sampling model with time-correlated data, we establish that despite adversarial corruption, the finite-time convergence rate of our algorithm matches that of existing results for the non-adversarial case, up to an additive term proportional to the fraction of corrupted samples. Moreover, we derive an information-theoretic lower bound revealing that the additive corruption term in our upper bounds is unavoidable. Next, we propose a variant of our algorithm that requires no prior knowledge of the statistics of the true reward distributions. The analysis of this setting is particularly challenging and is enabled by carefully exploiting a refined Azuma-Hoeffding inequality for almost-martingales, a technical tool that might be of independent interest. Collectively, our contributions provide the first finite-time robustness guarantees for asynchronous Q-learning, bridging a significant gap in robust RL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.