Uncertainty Estimation using Variance-Gated Distributions (2509.08846v1)
Abstract: Evaluation of per-sample uncertainty quantification from neural networks is essential for decision-making involving high-risk applications. A common approach is to use the predictive distribution from Bayesian or approximation models and decompose the corresponding predictive uncertainty into epistemic (model-related) and aleatoric (data-related) components. However, additive decomposition has recently been questioned. In this work, we propose an intuitive framework for uncertainty estimation and decomposition based on the signal-to-noise ratio of class probability distributions across different model predictions. We introduce a variance-gated measure that scales predictions by a confidence factor derived from ensembles. We use this measure to discuss the existence of a collapse in the diversity of committee machines.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.