Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

QCardEst/QCardCorr: Quantum Cardinality Estimation and Correction (2509.08817v1)

Published 10 Sep 2025 in quant-ph, cs.AI, cs.DB, and cs.LG

Abstract: Cardinality estimation is an important part of query optimization in DBMS. We develop a Quantum Cardinality Estimation (QCardEst) approach using Quantum Machine Learning with a Hybrid Quantum-Classical Network. We define a compact encoding for turning SQL queries into a quantum state, which requires only qubits equal to the number of tables in the query. This allows the processing of a complete query with a single variational quantum circuit (VQC) on current hardware. In addition, we compare multiple classical post-processing layers to turn the probability vector output of VQC into a cardinality value. We introduce Quantum Cardinality Correction QCardCorr, which improves classical cardinality estimators by multiplying the output with a factor generated by a VQC to improve the cardinality estimation. With QCardCorr, we have an improvement over the standard PostgreSQL optimizer of 6.37 times for JOB-light and 8.66 times for STATS. For JOB-light we even outperform MSCN by a factor of 3.47.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube