Context-Aware Query Refinement for Target Sound Extraction: Handling Partially Matched Queries (2509.08292v1)
Abstract: Target sound extraction (TSE) is the task of extracting a target sound specified by a query from an audio mixture. Much prior research has focused on the problem setting under the Fully Matched Query (FMQ) condition, where the query specifies only active sounds present in the mixture. However, in real-world scenarios, queries may include inactive sounds that are not present in the mixture. This leads to scenarios such as the Fully Unmatched Query (FUQ) condition, where only inactive sounds are specified in the query, and the Partially Matched Query (PMQ) condition, where both active and inactive sounds are specified. Among these conditions, the performance degradation under the PMQ condition has been largely overlooked. To achieve robust TSE under the PMQ condition, we propose context-aware query refinement. This method eliminates inactive classes from the query during inference based on the estimated sound class activity. Experimental results demonstrate that while conventional methods suffer from performance degradation under the PMQ condition, the proposed method effectively mitigates this degradation and achieves high robustness under diverse query conditions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.