Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algorithmic differentiation for plane-wave DFT: materials design, error control and learning model parameters (2509.07785v1)

Published 9 Sep 2025 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: We present a differentiation framework for plane-wave density-functional theory (DFT) that combines the strengths of algorithmic differentiation (AD) and density-functional perturbation theory (DFPT). In the resulting AD-DFPT framework derivatives of any DFT output quantity with respect to any input parameter (e.g. geometry, density functional or pseudopotential) can be computed accurately without deriving gradient expressions by hand. We implement AD-DFPT into the Density-Functional ToolKit (DFTK) and show its broad applicability. Amongst others we consider the inverse design of a semiconductor band gap, the learning of exchange-correlation functional parameters, or the propagation of DFT parameter uncertainties to relaxed structures. These examples demonstrate a number of promising research avenues opened by gradient-driven workflows in first-principles materials modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com